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oday’s fast-moving technology demands ever quicker
and more reliable ways to develop software systems
that meet user needs. Although industry spends bil-
lions of dollars each year developing software, many
software systems fail to satisfy their users. Moreover,
many systems once thought adequate no longer are,
while others are never finished or never used. The

September 1994 issue of Scientific American gives some sobering exam-
ples and concludes that “despite 50 years of progress, the software
industry remains years—perhaps decades—short of the mature engi-
neering discipline needed to meet the demands of an information-age
society.”1 Software development failures have reached staggering pro-
portions: an estimated $81 billion was spent on canceled software pro-
jects in 1995 and an estimated $100 billion in 1996.2

I E E E  S O F T W A R E 0 7 4 0 - 7 4 5 9 / 9 7 / $ 1 0 . 0 0  ©  1 9 9 7  I E E E 7 3

T

.



Many computer scientists have sug-
gested that formal methods can play a
significant role in improving this situa-
tion. Although these methods have
achieved impressive successes, they
have also produced disappointments.

Formal methods do not yet effectively
handle large and complex system devel-
opment, although they can make a con-
tribution. We know that requirements
for large and complex systems are near-
ly always problematic initially and that
they evolve continually throughout the
life cycle. Thus, any method you use to
implement requirements should be
flexible and robust, so that it can easily
accommodate the inevitable and often
continuous stream of changes. We sug-
gest that you can more effectively use
formal methods by

♦ putting more emphasis on formal
models and on domain-specific formal
methods;

♦ using formal models as a basis
for computer support of software evo-
lution;

♦ using large-grain software com-
position methods, rather than small-
grain statement-oriented programming
methods; and

♦ taking better account of the sys-
tem development context by tracing
objects and relationships back to
requirements.

FORMALIZATION

Webster’s Dictionary defines formal as
definite, orderly, and methodical;
defines method as a regular, orderly,
and definite procedure; and defines
model as a preliminary representation
that serves as a plan from which the
final and usually larger object is to be
constructed. Thus, to be formal does
not necessarily require the use of for-
mal logic, or even mathematics. But in
computer science, the phrase “formal
methods” has acquired a narrower
meaning, referring specifically to the
use of a formal notation to represent
system models during program devel-
opment. An even narrower sense refers
to the formalization of a method for
system development. Typically, you
first write a specification in a formal
notation, then refine it step by step
into code. Correctness of the refine-
ment steps guarantees that the code
satisfies the specification. In some
methods, developers can check cor-
rectness of the refinement steps using a
theorem prover for the method’s
underlying formal logic, but other
methods remain manual because it is
difficult to automate the notation used.
To better understand the issues and
myths related to the practical useful-
ness of formal methods, consult “Seven
More Myths of Formal Methods,”3

and for an appraisal of their recent
industrial applications, see “An
International Survey of Industrial
Applications of Formal Methods.”4

Logical foundation. The prototypical
formal notation is first-order logic. This
notation has been extensively studied
and has inference rule sets known to be
sound and complete for a convenient
class of models. Unfortunately, mech-
anical theorem provers for first-order
logic can be difficult to work with.

More powerful logical systems can
capture additional levels of meaning,

but their theorem provers can be even
harder to work with. For example, sec-
ond-order logic can express security
requirements for computer systems,
but it does not have a sound and com-
plete inference rule set.

Context. Experience shows that many
of the most vexing problems in soft-
ware development arise because any
computer system is situated in a partic-
ular social context. Moreover, much of
the information needed to design a sys-
tem is embedded in the worlds of users
and managers, and is extracted through
interaction with these people. This
information is informal and highly
dependent on its social context for
interpretation. On the other hand, we
define the programming languages and
other representations used to construct
computer-based systems using formal
syntactic and semantic rules. Both the
formal, context-insensitive, and the
informal, socially situated aspects of
information are crucial for success.
These two aspects have been called
“the dry” and “the wet,” and their rec-
onciliation claimed to be the essence of
requirements engineering.5

The dry and the wet. That we can
make sense out of social life suggests it
is somewhat orderly enough to be at
least partly formalizable. But it is diffi-
cult to formalize domains that have
many ad hoc special cases or contain
much tacit knowledge or are subject to
change. Formalization is more success-
ful on narrow and orderly domains,
such as sporting events, which have
long traditions, regulating bodies, rule
books, referees, and so on. For exam-
ple, it would be more difficult to for-
malize a children’s game than a regatta,
and more difficult still to formalize
human political behavior.

There are degrees of formalization,
ranging from the very formal dry to the
very informal wet. In the driest formal-
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izations, the metalanguage is also for-
malized, and an object-level model is
given as a formal theory in the metalan-
guage. In less fully formalized models,
the metalanguage may be simply a nat-
ural language, or a somewhat stylized
dialect. There can be rules at both the
object and the meta levels. Rules at the
object level are part of the model, while
rules at the meta level define the lan-
guage used for formalization. For a
given application, it can be a serious
error to formalize more than is appro-
priate to the particular situation.

Formalization is useful only to the
extent that it helps meet concrete goals.
For example, it would only make it
harder to bake cookies if the recipe were
expressed in a fully formalized language.
There are many similar examples in
requirements engineering. Good for-
malizations do not usually arise top-
down from desires, but rather are based
on extensive experience and intuition
with the domain being formalized and
the intended development process.

Formal methods generally address
some large class of systems, such as
information systems, or even all possi-
ble systems, whereas formal models are
often tailored to a specific application
domain. Experience suggests that using
mechanically processable formal mod-
els in building and integrating tools
can yield systems that increase automa-
tion and decrease inconsistency, and
thus produce software faster, cheaper,
and more reliably. For example,
attribute grammars are a formally
processable notation that can be useful
in this way. Experience also suggests
using an evolutionary development
process that involves rapid prototyp-
ing, such as that supported by the com-
puter-aided prototyping system
(CAPS).6 Such an approach contrasts
with formal methods that call for
mathematical rigor throughout the
development process, usually by using
a formal notation with a precise mathe-

matical semantics in connection with a
step-by-step refinement process. We
believe it makes more sense to provide
computer support for software evolu-
tion by formalizing the activities of the
supporting tools rather than those of
the software engineers.

In software engineering, you cannot
validate results purely by proving theo-
rems. On the contrary, you must mea-
sure the value of a contribution by its
impact on practical software develop-
ment and ultimately on customer satis-
faction. But formalization still plays a
fundamental role in software engineer-
ing, because you must have a formal (in
the broad sense) model of a domain
before you can design effective soft-
ware for that domain. That is, problem
formalization is an essential part of
requirements capture.

In this respect, software engineering
differs from other engineering disci-
plines. For example, in electrical engi-
neering, the formalization of the prob-
lem domain is already done, and the
practicing engineer need only apply it.
The lack of such formalization makes
software engineering more difficult
than other engineering disciplines,
which makes it less developed and less
effectively practiced than its cousins.

Unfortunately, like many things in
computer science, formal methods
have been oversold. Formal methods,
notations, and tools do not yet ade-
quately support the development of
large and complex systems. In general,
practitioners consider formal methods
useful for proving that programs satisfy
certain mathematical properties, but
such methods are also often considered
too expensive to be practical. This view
ignores evidence that appropriate and
correctly used formal methods can
reduce time to market, provide better
documentation, improve communica-
tion, facilitate maintenance, and orga-
nize activities throughout the life cycle.
Factors that influence the cost-effec-

tiveness of formal methods include the
consequences of software failure, the
type of formal method to be applied,
the availability of automated support
for the formal method, and the skill
level of available personnel.

SOFTWARE EVOLUTION

Traditionally, many in industry
have viewed software evolution as
occurring only after the completion of
initial development. For example, L.J.
Arthur defines software evolution as
consisting of “the activities required to
keep a software system operational and
responsive after it is accepted and
placed into production.”7 This is syn-
onymous with maintenance, but avoids
that word’s negative connotations.
According to Lawrence Bernstein (for-
merly of AT&T), evolution empha-
sizes the dynamic aspect of software
development.8

Here, we consider software evolu-
tion to include all the activities that

change a software system, as well as the
relationships among those activities. In
this case, evolution is not just another
name for maintenance, because it
occurs throughout the life cycle.
Evolution encompasses activities rang-
ing from adjusting requirements to
updating working systems, including
responses to requirements changes,
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improvements to performance and clar-
ity, bug repair, version and configura-
tion control, documentation, testing,
code generation, and the overall orga-
nization of the development process.

The term “evolution” focuses atten-
tion on change. Change is inevitable
and unending during software develop-
ment, because it is so difficult to get a
system right before it has been tried by
actual users under actual operating
conditions. Not only do the code and
design change, the requirements and
the needs that drive the requirements
change as well. This occurs partly
because users and analysts get a better
understanding of what they really need
when they see the software operating,
but also because the system context
changes: laws and regulations change,
the competition changes, workers’
expectations and habits change, man-
agement structure changes, organiza-
tional goals change, and so on.

Flexibility through prototyping. Change

motivates the use of iterative life cycle
processes, and in particular, prototyping:
the process of quickly building and eval-
uating a series of concrete, executable
models of selected aspects of a proposed
system. In prototyping, evolution activi-
ties are interleaved with development,
and continue even after delivery of the
system’s initial version.6,9

This contrasts with traditional life
cycles, such as the waterfall model,
which assume that requirements can be
correctly determined at the beginning
of a project. Generally, project staff
develop an overall system architecture
from the requirements, write specifica-
tions and code for individual compo-
nents, then test and debug the system.
Maintenance appears in or after the
final phase of testing and debugging.

Figure 1 shows an iterative proto-
typing life cycle. The user and designer
work together to define the require-
ments for the envisioned system. The
designer constructs a prototype at the
specification level. Demonstrations of

the prototype let the user evaluate the
prototype’s actual behavior against its
expected behavior, identify problems,
and work with the designer to redefine
requirements. This process continues
until the prototype successfully cap-
tures the critical aspects of the envi-
sioned system. The designer then uses
the validated requirements as a basis
for the production software. In this
way, software systems can be delivered
incrementally and requirements analy-
sis can continue throughout the sys-
tem’s lifetime. Incremental delivery
gives users early experience with the
software, leading to new goals, trigger-
ing further iterations, and extending
the advantages of prototyping to the
production environment.

Evolution and formal methods. Given the
inevitability of change and iteration,
formal methods should be more useful
in supporting evolution than in their
traditional role of verifying that code
meets certain fixed requirements.
Possible contributions to software evo-
lution include computer-aided design
completion, program transformation,
dependency maintenance (among
needs, requirements, design informa-
tion, documentation, code, and so on),
code generation (for certain limited
purposes), and merging changes to
programs. These contributions be-
come even more valuable when many
programmers work concurrently on a
large and complex system.

The difficulties of software evolution
often extend beyond the purely techni-
cal: Social, political, and cultural factors
can be significant and in many projects
will dominate development costs.

Nevertheless, formal model-based
tools can help maintain a software
development project’s integrity in
many ways, such as scheduling project
tasks, monitoring deadlines, tracing
reasons for objects and changes, and
maintaining dependency relations
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Because evolution plays a fundamental role in software
development, we must understand it better, formalize key
aspects, and build suitable tools based on the resulting formal
models. This endeavor is still at an early stage. Here we
briefly describe a formal model that helps develop tools to
manage both the activities in a software development project
and the products that those activities produce.

This model simplifies and clarifies previous CAPS models
by incorporating some of their features into a more abstract
mathematical structure. We intend that the software evolu-
tion data model presented here be easier to modify, extend,
and understand than earlier models; this should also make it
easier to implement. The model represents the evolution his-
tory and future plans for software development as a hyper-
graph. Hypergraphs generalize the usual notion of a directed
graph by allowing hyperedges, which may have multiple out-
put nodes and multiple input nodes. The following mathe-
matical concepts are used in this software evolution model:

Definition 1. A (directed) hypergraph is a tuple (N,E,I,O)
where

N is a set of nodes,
E is a set of hyperedges (sometimes simply called edges),

I : E → 2N is a function giving the set of inputs of each hyper-
edge, and
O : E → 2N is a function giving the set of outputs of each
hyperedge.
A path p from a node n to a node n′ is a sequence e1...ek of k>0
edges and a sequence n1...nk+1 of nodes such that ni ∈ I(ei) and
ni+1 ∈ O(ei) for i = 1,...,k, where n = n1 and n′ = nk+1. A hyper-
graph H is acyclic if there is no path from any node in H to itself.

A set N′ of nodes is reachable from a set R of nodes if
there is a path to each n′ ∈ N′ from some n ∈ R. A hyper-
graph H is reachable from a set R of its nodes if its set N of
nodes is reachable from R. A root of H is a node from which
H is reachable. A leaf of H is a node from which no other
node is reachable.

If H = (N,E,I,O) is a hypergraph, then its opposite, denot-
ed Hop, is the hypergraph (N,E,O,I). We say that H is core-
achable from N′ if Hop is reachable from N′. A hyperpath in a
hypergraph H = (N,E,I,O) from D ⊆ N to T ⊆ N is a minimal
hypergraph contained in H, whose node set contains D and
T, and that is reachable from D and coreachable from T; we
call D and T the input and output sets of the hyperpath,
respectively.

In the hypergraph software evolution data model each
node represents a software component, which is an
immutable version of a software object. Edges record depen-
dencies among various versions of software objects in the sys-
tem and represent the evolution steps (development activities
that create the output objects of the edge). These software
objects can be of many different kinds, including problem
reports, change requests, reactions to prototype demonstra-
tions, requirements, specifications, manuals, test data, design
documents, and many other kinds of object besides program
code. The dependencies represent the essence of the deriva-
tion history, as well as plans for future evolution.

Definition 2. An evolutionary hypergraph is a hypergraph H
= (N,E,I,O) together with functions LN : N → C and LE : E →
A such that the following assumptions are satisfied:

N and E are disjoint subsets of a set U whose elements are
called unique identifiers;

if O(e) ∩ O(e′) ≠ ∅ then e = e′; we call this the identifiability
condition; 

H is acyclic; and 
A={s, d} ⋅ A (that is, each element of A has the form (S, a′)

or (d, a′), where a′ ∈ A′.
An edge labeled “s” is called a step and one labeled “d” is

called a decomposition.
The elements of N are identifiers for software compo-

nents, the elements of E are identifiers for evolution steps,
and I and O give the inputs and outputs of each evolution
step. The function LN labels each node with component
attributes from the set C, including the corresponding ver-
sion of the software object, and the function LE labels each
edge with step attributes from the set A, including the cur-
rent status of the step. The notion of component used here
includes components in the usual sense as well as systems
built by combining subcomponents, test cases, bug reports,
and other kinds of software objects. Decomposition edges
include the part_of relation in earlier versions of this model.

The first condition says that the node and edge identifiers
are distinct. The second says that the output sets of different
evolution steps are disjoint; this implies that each step is
uniquely identifiable by any component that it produces, so
that the producing step can be considered an attribute of a
component. The third condition implies that the process of
software evolution never brings us back to a component we
have already built; this simply means that we never reuse a
unique identifier for a component. However, it is certainly
possible that a later version of a component is equal to an
earlier one, in the sense that L(n) = L(n′) where n ≠ n′ and n′
depends on n, in a sense made precise by the following:

A node n′ depends on a node n if there is a path from n to
n′. Similarly, a node n depends on a step s if there is a path to
n involving s. A step s′ depends on a step s if there is a path
involving both s and s′ with s earlier in the path than s′. We
may say that a component c′ depends on a component c if
there is a path from n to n′ such that c = L(n) and c′ = L(n′).

The model developed so far does not include the idea that
some evolution steps may be composites of other, lower level
steps. To model this, we introduce a hierarchical structure on
the hyperedges in a hypergraph. This also has the advantage
of permitting overviews of the evolution history at various
levels of detail.

Definition 3. An (edge) hierarchical hypergraph is an acyclic
graph with nodes labeled by hypergraphs, such that: the
graph has just one leaf and one root; each of its edges corre-
sponds to an edge expansion of a single hyperedge in its
source hypergraph, the result of which is the hypergraph in
its target; and the result of the composite expansions along

Continued on page 78

A HYPERGRAPH MODEL FOR SOFTWARE EVOLUTION
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any two paths between the same two nodes are equal. A hier-
archical evolutionary hypergraph is a hierarchical hypergraph
whose nodes are labeled by evolutionary hypergraphs and
whose edges are labeled by the step that is expanded.

The intuition behind this definition is that the root node
hypergraph is the most abstract top-level view of the system’s
evolution history and structure, while the leaf node is the
fully expanded form. The nodes of the root hypergraph are
different versions of the entire software product, while the
nodes of the leaf hypergraph include the versions of the
atomic software objects that constitute the software product.
All of the steps in the leaf hypergraph are atomic. An edge
expansion in a hypergraph replaces a hyperedge by a hyper-
graph containing the original nodes; we leave this technically
complex notion informal and illustrate it in the following
example. We do not intend that the evolution data should be
represented as described in the preceding definition; rather,
we intend it as an abstract model against which efficient
implementations can be tested.

The top level of Figure A (1) contains three versions of a
software system, labeled P1.1, P1.2, and P2.2. Step s1 derives
a new version P1.2 from P1.1, and step s2 derives another
variant P2.2 from P1.1. This is a simple evolutionary hyper-
graph, which is just an ordinary graph. The lower level in
Figure A (1) shows the expansion of the edge s2. The decom-
position edges d1.1 and d2.2 show that A1.1 and B1.1 are
parts of P1.1, and that A2.2, B1.1, and C2.1 are parts of P2.2.
The substep s2.a2 derives A2.2 from A1.1, while the substep
s2.c1 derives the new component C2.1 from nothing at all. In
a more complete example, C2.1 might be derived from a new
requirement.

These two descriptions of the system’s history and struc-
ture correspond to the hypergraphs labeled H0 and H2 in
Figure A (2); the edge from H0 to H2 represents the expan-
sion of the evolution step s2. If we also expand the step s1,
corresponding to the edge from H0 to H1, then we must also
have a fourth hypergraph H12, containing both edge expan-
sions. The complete evolutionary hypergraph has the dia-
mond shape shown in Figure A (2), in which H0 is the root
and H12 the leaf. This model can be improved and extended
in many ways, such as by imposing more structure on the set
U of unique identifiers to define the concepts of version and
variant; we have already used such a structure informally in
the example.

Our intention has been to abstract away as much detail as
possible while still showing the basic concepts. For example,
the decomposition of the abstract set A as {s,d} X A′ intro-
duces structure that conveys further information about evolu-
tion; by further decomposing A′, even more information can
be represented. For example, steps can have attributes and
relationships to reflect management decisions, such as dead-
lines, priorities, and the designers involved.

The evolution control system,1 based on an earlier version
of this model, provides algorithms using the information in
the graph to support several different kinds of automation.
This support includes first approximations to the decomposi-
tion structure of a step derived from the decomposition
structure of the current version of the affected components

and induced steps implied by dependencies between compo-
nents. For example, if a requirement is modified then the
program components derived from that requirement must
also be modified.

The tool based on such models also has scheduling algo-
rithms that provide estimated completion times for project
activities and alerts when project deadlines are affected. The
schedule is adjusted as more information becomes available,
using the management policies recorded as attributes of steps
to automatically assign new tasks to designers as they com-
plete previous tasks. The system also uses the dependency
information in project plans to deliver the proper versions of
the components needed to carry out each step and to insert
the versions of components produced by completed steps in
the proper places in the graph. This automates check-in and
check-out from the project database.

REFERENCE
1.S. Badr, A Model and Algorithms for a Software Evolution Control System,

doctoral dissertation, Naval Postgraduate School, Monterey, Calif., 1993.
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Figure A. Hierarchical Evolutionary Hypergraph. The top-
most part of (1) shows three versions of a software system;
the bottom part of (1) shows the expansion of the edge s2.
The complete evolutionary hypergraph appears in (2).
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among versions, variations, and compo-
nent decompositions. The hypergraph
model described in the box on pages 77
and 78 is designed to support such
activities.

The US Department of Defense
issued MIL-STD-498 in 1994.10 This
standard has evolved into ISO/IEC
12207, which will be adopted as joint
standard J-STD-016. These software
development standards will have a pro-
found effect on software evolution.
They replace several previous stan-
dards that mandated the waterfall
model, thus creating new opportunities
by allowing considerably greater flexi-
bility. But it also requires greater skill
levels because it must be tailored to
specific projects and organizations.
Large and complex software develop-
ment projects based on specially tai-
lored standards will be difficult to
manage without appropriate tool sup-
port, and it will be difficult to develop
such tools without appropriate formal
models. Contrary to typical assump-
tions in work on software processes, we
believe that such models should focus
on what the tools do rather than on
what the personnel involved do.

SCALABILITY FOR
APPLICATIONS

Our analysis of formal methods dis-
tinguishes between small-, large-, and
huge-grain methods, referring to the
size of the atomic parts used, rather
than to the size of the system being
developed. We reluctantly chose the
word huge as the next step above large,
because large is already in common use
in certain communities; it would have
been better if the three steps were
instead called fine, medium, and coarse.

Small-grain methods. The classic formal
methods fall into the small-grain catego-
ry. These methods have a mathematical

basis at the level of individual statements
and small programs, but rapidly hit a
complexity barrier when programs get
large. In particular, systems for reason-
ing with pre- and postconditions—such
as Hoare axioms, weakest preconditions,
predicate transformers, and transforma-
tional programming—all have small-size
atomic units and fail to scale up because
they do not provide structuring or
encapsulation. In general, small-grain
methods have great difficulty handling
changes, and thus fit poorly into the life
cycle. Transformational programming is
less resistant to change than other small-
grain methods, but has the problem that
in general there is no bound to the num-
ber of transformations that may be
needed; this restricts its use to relatively
small and well-understood domains.

Large-grain methods. The most impor-
tant techniques of large-grain program-
ming involve module composition. The
CAPS system11 provides module com-
position for rapid prototyping, with a
dataflow-like semantics that supports
hard real-time constraints and with
facilities for retrieving reusable software
components from a repository. The
project is also working on the founda-
tions of software maintenance and
developing techniques to support design
evolution, requirements tracing, config-
uration management, and project man-
agement. One of these techniques,
change merging, has the potential to aid
in combining concurrent changes to the
same base version of a prototype as well
as updating multiple versions of a pro-
totype with a common change.12

CAPS consists of an integrated tool
set that helps you design, translate, and
execute prototypes. These include an
evolution control system based on a
graph model for evolution, a change
merge facility, automatic generators for
schedule and control code, and auto-
mated retrievers for reusable compo-
nents.

The prototype system description
language PSDL11 provides a simple way
to abstractly specify software systems for
both prototypes and production soft-
ware. A PSDL program consists of two
kinds of objects, corresponding to
abstract data types (PSDL types) and
abstract state machines (PSDL opera-
tors) as shown in Figure 2. Their func-
tion is to localize the information for
analyzing, executing, and reusing inde-
pendent objects. They are also the basis
for version control and are natural units
of work in a distributed implementation.

When an executable Ada module is
associated with each atomic PSDL
object, CAPS can automatically gener-
ate “glue code” that composes these
modules into a system having the
structure described by the dataflow
diagram. This code includes a generat-
ed schedule and tests for all the real-
time constraints that have been
declared; these components can be
used to check the design assumptions
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on which the schedule is based. The
system can then be compiled, executed,
and tested. Error messages are pro-
duced during execution if constraints
are violated.

Huge-grain methods. Huge-grain parts
are much larger than small-grain state-
ments and large-grain modules. Huge-
grain parts may be systems themselves,
typically commercial off-the-shelf sys-
tems. Developing systems using huge-
grain parts is qualitatively different
from working with small- and large-
grain parts. In particular, correcting
some errors in a huge-grain part may
be impossible, in which case they must
be accepted and worked around. For
example, a network protocol such as
TCP/IP may have been obtained from
an external vendor, so the developers
of the larger system do not have access
to its source code. If the version being
used has a bug, there is no choice but
to find a way to avoid that bug. This is
often possible because of the multiplic-
ity of features provided in such parts.
Specification and requirement meth-
ods for huge-grain systems must be
robust, effective, easy to learn, and easy
to incorporate into the life cycle.

Technology developed for large-
grain system development can also be
useful for the huge-grain case, since
huge-grain parts can often be treated
as modules. For example, PSDL’s con-
trol constraints, such as execution
guards and output guards, support
adjustments to the behavior of huge-

grain parts without access to their
source code. The wrapper concept is
also relevant. Huge-grain methods are
an important area for further research.

Parameterized programming. The
object-oriented version of the parameter-
ized programming13 approach is another
example of a large-grain method. It uses
module expressions, theories, and views
to compose systems from subsystems. It
distinguishes among sorts for values,
classes for objects, and modules for
encapsulation. Parameterized program-
ming lets you express designs and high-
level system properties in a modular
way, and lets you parameterize, com-
pose, and reuse designs, specifications,
and code as well.

In this approach, the main pro-
gramming unit is the module, which lets
you declare multiple classes together.
Module composition features include
summing, renaming, enhancing, modi-
fying, parameterizing, instantiating,
and importing. The sum of modules is
a kind of parallel composition that
takes account of sharing. Renaming lets
you assign new names to the sorts,
classes, attributes, and methods of
modules; enhancing lets you add func-
tionality to a module; and modifying
lets you redefine some of its units.

Parameterized programming was
first implemented in the OBJ language,
and has also been implemented in the
Functional Object-Oriented Program-
ming System (FOOPS) and Eqlog lan-
guages. It has a rigorous semantics based
on category theory. Much of the advan-
tage of parameterized programming
comes from the ability to parameterize
modules using theories and views; for
example, a higher-order capability can
be provided in a purely first-order
setting.

Parameterized programming sup-
ports design in the same framework as
specification and coding. Designs are
expressed as module expressions and

can be executed if specifications that
have a suitable form are available. This
gives a convenient form of prototyping.
Alternatively, prototypes for the mod-
ules involved can be composed to give a
system prototype by evaluating the
module expression for the design. A
novel feature of the approach is to dis-
tinguish between structuring, generici-
ty, and compositionality in horizontal
and vertical modes. Vertical structure
relates to layers of abstraction, in which
lower layers implement or support
higher layers. Horizontal structure is
concerned with module aggregation,
enrichment, and specialization. Both
kinds of structure can appear in module
expressions and both are evaluated
when a module expression is evaluated.
The approach can also support relative-
ly efficient prototyping through built-in
modules, which can be composed just
like other modules, and which offer a
way to combine prototypes with effi-
cient programs in a standard program-
ming language. This is similar to the
CAPS approach.

The module and type systems of
parameterized programming are con-
siderably more general than those of
languages like Ada, Clu, and Modula-3,
which provide only limited support for
module composition. For example,
interfaces in these languages can only
express syntactic restrictions on actual
arguments, cannot be horizontally
structured, and cannot be reused.
Lileanna14 implements many ideas of
parameterized programming for the
Ada language, including horizontal and
vertical composition, following the
design of the LIL (library interconnec-
tion language) system.13

DOMAIN-SPECIFIC
FORMAL METHODS

There is much more to formal meth-
ods than suggested by the themes domi-
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nant in the past, namely synthesis and
correctness proofs for algorithms.
Although both of these remain interest-
ing topics for theoretical research, their
direct impact on the practice of large-
scale software development is limited.

Several recent, successful applica-
tions of formal methods seem to form a
cluster suggesting a new paradigm for
applying formal methods. These appli-
cations involve a tool having all or most
of the following attributes:

♦ A narrow, well-defined, and well-
understood problem domain is ad-
dressed, which may have an existing,
successful library of program modules.

♦ There is a coherent user commu-
nity interested in the problem domain;
the users have a good understanding of
the domain, good communication
among themselves, a standard terminol-
ogy, and access to financial resources.

♦ The tool has a graphical user
interface that is intuitive to the user
community, embodying that commu-
nity’s own language and conventions.

♦ The tool takes a large-grain
approach: rather than synthesizing
procedures out of statements, it syn-
thesizes systems out of modules; it may
use a library of components and syn-
thesize code for putting them together.

♦ Inside the tool is a powerful
engine that encapsulates formal meth-
ods concepts and/or algorithms: it may
be a theorem prover or a code genera-
tor; users do not have to know how it
works, or even that it is there.

We suggest the name domain-specific
formal methods for this emerging para-
digm, in recognition of the role played
by the user community and their spe-
cific domain. Some systems that fall
under this heading include

♦ Amphion, which combines pro-
grams for astronomy calculations,15

♦ CAPS for real-time program-
ming,8 and

♦ Panel for multimedia animation.16

This paradigm falls into the catego-

ry of large-grain methods and can
potentially be extended to huge-grain
problems. The development of
domain-specific formal methods
should enable our discipline to replace
the current practice of inventing new
formal models with the more efficient
practice of refining and recombining
existing application models within sup-
ported domains.

This suggests a vision for the future
that is less ambitious and more realistic
than that of the past. It calls for using
formal models and algorithms as a
basis for creating computer tools to
help solve practical problems that are
more limited and well defined than in
the past. This vision replaces the un-
realistic artificial-intelligence goals of
fully automatic software synthesis and
verification with the recognition that
human understanding and creativity
must play an important role and that
automated decision support can effec-
tively enhance human capabilities. It
also recognizes that requirements
changes are a dominant aspect of prac-
tical software development that relies
on automated tools to make software
easier to change.

LIMITS AND PROBLEMS

Despite their many potential bene-
fits, formal methods are not a panacea.
We have identified nine specific prob-
lems with them17:

♦ Formal notation is alien to most
practicing programmers, who have lit-
tle training or skill in higher mathe-
matics. Also, supporting tools are often
insufficiently automated or lack user
interfaces suitable for engineers.

♦ Formal methods papers and
training often consider only toy exam-
ples taken from existing literature.
Although it may be impossible to give
a detailed treatment of a realistic exam-
ple in a research paper or in the class-

room, such examples must exist for a
method to have credibility. Effective
training in formal methods should
treat parts of a realistic, nontrivial
application.

♦ Many of the most popular formal
methods do not scale up to practical-
size problems. The gap between speci-
fications and code is still great. Despite
serious and long-term efforts in type
theory, weakest preconditions, trans-
formational programming, and so on,
coding remains largely manual.

♦ Some advocates of formal meth-
ods dogmatically insist that everything
must be proved to the highest possible
degree of mathematical rigor. At the
least, they argue, it must be machine-
checked by a program that allows no
errors or gaps, and it should be pro-
duced by a machine as well. However,
mathematicians rarely achieve or even
strive for such rigor; published proofs
in mathematics are highly informal and
often have small errors. Mathema-
ticians never explicitly mention rules of
inference from logic unless they are
proving something about such rules.
The highest levels of formality can be
very expensive, and are only warranted

for a system’s critical aspects.
♦ Formal methods tend to be rigid

and inflexible. In particular, it is diffi-
cult to adapt a formal proof of one
statement to prove another, slightly
different statement. Since require-
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ments and specifications are constantly
changing in the real world, such adap-
tations are frequently necessary. But
classical formal methods have great
difficulty in dealing with such changes;
their proofs are a discontinuous func-
tion of how problems are formulated.

♦ Important aspects of practical
software evolution are often ignored.
In particular, it is difficult to integrate
formal methods into existing software
processes. A related difficulty is that
when you use multiple methods
together you may not be able to inte-
grate their underlying models in a way
that supports building a practical soft-
ware development system to support
the methods.

♦ Often vendors do not use the best
technology or even understand soft-
ware development very well; they tend
to be interested in profits above all and
to have little time for learning either
new technologies or their benefits.
They often use brute-force methods to
speed up projects, forgetting that this
can be a shortcut to disaster.

♦ Some formal methods have tech-
nical difficulties. A technical deficiency

of many small-grain formal methods is
that first-order logic is inadequate for
expressing the weakest precondition of
a loop, as noted in the late 1960s by
the logician Erwin Engeler.18 For
example, the weakest precondition for
a theorem prover for first-order logic
with arithmetic cannot itself be
expressed in first-order logic (the post-
condition is that the input is a tautol-
ogy). However, a second-order formu-
lation is adequate, and has been used
by us for some years in teaching and
research, including the SPEC language
used at the Naval Postgraduate
School.9,19

♦ Finally, certain fundamental limi-
tations are imposed because all formal-
izations are situated in a certain context.
In particular, formalizations are emer-
gent in that they are always constructed
and interpreted in a context. Formali-
zations are contingent in that their con-
struction and interpretation depend
upon details of the context in which this
construction or interpretation actually
occurs; these details may include inter-
pretations of prior events. Moreover,
interpretations are subject to negotia-

tions among interested parties.
Formalizations are open in that they can
always be revised in the light of further
analyses. They are also vague in that
their interpretation is only elaborated to
the extent that it is practically useful to
do so; the rest is left as tacit knowledge.
Further discussion of these points may
be found elsewhere,5 including a gener-
al introduction to the social aspects of
requirements engineering.

These limits imply that both human
effort and context necessarily play a
fundamental role whenever formaliza-
tions are created, interpreted, or
updated. Furthermore, much of the
context of that information may be
social, such as goals, responsibilities,
and needs associated with particular
roles in an organization. These consid-
erations are significant for designing
tools to support software development.
In particular, as an aid to future modi-
fications it is highly desirable to make
contextual information available along
with specifications and code. The lack
of such information is what makes
redesign difficult and what motivates
current research on reengineering.
Clearly, it would be better if such
information were systematically
recorded in the first place.

LESSONS LEARNED

We have taken a broad view of for-
malization’s role in the software devel-
opment process and have considered
the role of formal methods within that
context. In particular, we found that you
must understand software evolution to
understand the promises and problems
of formal methods, that evolution is
inevitable and unending in software
development, and that much of the
pressure for change arises from the
social context of system development.
Since formal methods tend to be brittle
or discontinuous—a small change in
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The requirements phase of a large-system development
project is the most error-prone, and requirements errors are
also the most expensive to correct. Therefore improve-
ments here will have the greatest economic leverage.
Unfortunately, requirements are one of the least-explored
areas of software engineering. There is lively debate about
even the definition and scope of the term “requirements.”
Ian Sommerville defines requirements capture and analysis
as “the process of establishing the services the system
should provide and the constraints under which it must
operate.”1 Al Davis suggests that requirements engineering
is the analysis, documentation, and ongoing evolution of
both user needs and the external behavior of the system to
be built.2 Goguen believes that requirements are properties
that a system should have to succeed in its implementation
environment.3 These properties refer to the system’s con-
text of use and thus to social as well as technical factors.

Since many large software projects fail because of social,
political, or cultural factors, we must take into account the
social context of computer-based systems, in addition to the
usual technical factors. Social context is especially impor-
tant for requirements.

Traceability. We have undertaken several projects on
improving the acquisition, traceability, accessibility, modu-
larity, and reusability of the many objects that arise and are
manipulated during software development, with a particular
focus on the role of requirements.3 One study administered
a detailed two-stage questionnaire to software engineers at a
large UK telecommunications firm. The questionnaire
revealed that traceability was a major concern that consisted
of several different problems that would best be treated in
different ways.

Major distinctions appeared between the traceability of
prerequirements specification and that of postrequirements
specification and between forward and backward traceabili-
ty. Analysis also showed that access to users was a common
difficulty that prevented acquiring necessary information.
Further investigation revealed certain policies and tradi-
tions that restrict communication within this firm, so that
requirements engineers often could not discover what users
really needed. One problem was an internal market that
restricted communication between “vendors” and “clients”
within the firm. Various political considerations also played
an important role. Abolition of the internal market for
requirements projects, and generally improving the open-
ness of information, could potentially save enormous sums
for firms like the one studied.

Tracing dependencies. Another aspect of the traceability
problem is the difficulty of maintaining the huge mass of
dependencies among the many objects produced by a large
software system development effort. Often these objects are
not adequately defined; for example, module boundaries
may be incorrectly drawn or not even explicitly declared at
all and interfaces may be poorly drawn or badly document-
ed. With-out using representations for the objects involved,
formal models for the dependencies, and tool support for
managing them, it is impossible to know what effect a
change will have, and in particular, to know what other
objects may have to be changed to maintain consistency.

To meet this challenge, the TOOR system (for Tracing
Object-Oriented Requirements) was developed.4 It is a flex-
ible, user-configurable object-oriented system that sup-
ports,

♦ links among objects representing user-definable
relationships,

♦ grounding decisions in the prior objects that justify
them, and

♦ tracing dependencies.
Particular challenges include formalizing dependencies

and developing methods for calculating dependencies and
propagating the implications of changes. This approach,
called hyperrequirements, builds on earlier work on hyperpro-
gramming, and is intended to support, by linking related
objects, both the social context of requirements decisions
and their traceability. Parameterized programming will sup-
port reuse, and the generalized notion of relation will sup-
port links among design, coding, and maintenance. Other
work at Oxford is exploring the use of novel methods from
sociology such as ethnomethodology, and the use of situat-
ed abstract data types, a new concept that helps bridge the
gap between computer technology and its social context.3
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the domain can require a great deal
of new work—automation is often
vital for their practical application.

The construction, interpretation,
and updating of formalism is always
situated in a context, and under-

standing that context can be impor-
tant in capturing the requirements
for large and complex systems. Some
fundamental formalization limits
arise in this way. Modularity and
reuse can help with any approach to
improving the quality and reducing
the cost of software development.
We need traceability to get better
control of the software life cycle.

Figure 3 shows the relationships
between some of the concepts we’ve
described. A line indicates that the
lower concept is a subclass of the
higher one.

Building a brighter future. Whatever
we learn about software develop-
ment should be appropriately for-
malized, implemented, and put into
computer science curricula so that
future generations can do better
than we have. Teaching a formal
method while ignoring its use in real
projects can have a highly negative
impact. For example, students may
be taught programming from formal
specifications, but not that specifica-
tions come from requirements, and
that requirements are always chang-
ing, often because of social, political,
and cultural factors.

As a result, students are not pre-
pared for the rapid change and polit-

ical problems found in real industri-
al work. Many students also feel that
formal methods turn programming
from a creative activity into a bor-
ing, formal exercise. We have seen
cases in which students have left the
discipline because teachers have
failed to deal with these problems.

Students need to know how to
deal with real programs that have
thousands or even millions of lines
of code. Most of the examples used
in textbooks and the classroom are
very small, however, and carefully
crafted correctness proofs of simple
algorithms give an entirely mislead-
ing impression of what real pro-
gramming is like. Also, most of the
techniques taught are small-grain
and thus do not scale up to large and
complex problems.

Reliable tools based on a formal
model can let students do problems
that would be impossible by hand.
Teachers should also present meth-
ods and tools that work on large-
grain units—modules—rather than
on small-grain units—statements,
functions, and procedures—because
large-grain methods can scale up,
whereas small-grain methods can-
not.  Suites  of  sample problems
should be developed that systemati-
cally show how and when to apply
formal methods, and how to com-
bine them with informal approaches.
This will require developing appro-
priate module collections, refining
and extending existing formal meth-
ods and tools, developing more nat-
ural user interfaces,  re-thinking
process models, revising curricula,
retraining teachers, and experimen-
tally validating the resulting meth-
ods in practical situations.

If we fail to properly train the
next generation of software develop-
ers, the problems that we see today
will worsen as the size and complexi-
ty of systems continue to grow and

the dead weight of legacy code con-
tinues to mount.

here is no doubt that formal
models and methods can be

very useful in practical software
development. It also seems clear that
they are necessary for transforming
software engineering into a disci-
pline that is as well understood and
well organized as other engineering
disciplines, which rely on sound and
well-tested mathematical models.
The difficulty is that formalization
itself plays a more basic role in soft-
ware engineering than in other engi-
neering disciplines. Because soft-
ware is still actively expanding into
completely  new appl icat ion
domains, and because requirements
capture is a process of formalization,
software development requires the
construction of new formal models
for each new application, as well as
using established formal models.

More emphasis should be placed
on context in system development
and on domain-speci f ic  formal
methods. However, basic research in
computational logic still provides
the foundation for many practical
applications of formal models and
methods, and advances in this area
will increase the amount of comput-
er support that can be provided in
practice. A short-term view of what
technology needs should be avoided,
as should overselling formal meth-
ods, either as a general field or as an
approach to particular applications. 

With these caveats, formal meth-
ods and formal models should play
an increasingly important part in
coming to grips with the ongoing
crisis engendered by our escalating
expectations about the size, com-
plexity, and reliability of software
systems.
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